
Apriori Algorithm, DHP and DIC 



What Is Frequent Pattern Analysis? 
• Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) 

that occurs frequently in a data set  

• First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of 

frequent itemsets and association rule mining 

• Motivation: Finding inherent regularities in data 

– What products were often purchased together?— Beer and diapers?! 

– What are the subsequent purchases after buying a PC? 

– What kinds of DNA are sensitive to this new drug? 

– Can we automatically classify web documents? 

• Applications 

– Basket data analysis, cross-marketing, catalog design, sale campaign 

analysis, Web log (click stream) analysis, and DNA sequence analysis. 
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Why Is Frequent Pattern Mining Important? 

• Discloses an intrinsic and important property of data sets 

• Forms the foundation for many essential data mining tasks 

– Association, correlation, and causality analysis 

– Sequential, structural (e.g., sub-graph) patterns 

– Pattern analysis in spatiotemporal, multimedia, time-series, 
and stream data  

– Classification: associative classification 

– Cluster analysis: frequent pattern-based clustering 

– Data warehousing: iceberg cube and cube-gradient  

– Semantic data compression: fascicles 

– Broad applications 
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Basic Definitions 

• I = {I1, I2, …, Im}, set of items. 

• D = {T1, T2, …, Tn}, database of transactions, where each 
transaction Ti  I. n = dbsize. 

• Any non-empty subset X  I is called an itemset. 

• Frequency, count or support of an itemset X is the number 
of transactions in the database containing X: 

– count(X) = |{Ti  D : X  Ti}| 

• If count(X)/dbsize  min_sup, some specified threshold 
value, then X is said to be frequent. (0 ≤ min_sup ≤ 1) 

   (So,  is frequent automatically because count() = dbsize)  



Scalable Methods for Mining Frequent Itemsets 

• The downward closure property (also called apriori property) of 
frequent itemsets 

– Any subset of a frequent itemset must be frequent  

– If {beer, diaper, nuts} is frequent, so is {beer, diaper} 

– Because every transaction having {beer, diaper, nuts} also 
contains {beer, diaper}  

• Also (going the other way) called anti-monotonic property: any 
superset of an infrequent itemset must be infrequent. 
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Basic Concepts: Frequent Itemsets and Association 
Rules 
• Itemset X = {x1, …, xk} 

• Find all the rules X  Y with minimum 

support and confidence 

– support, s, probability that a 
transaction contains X  Y 

– confidence, c, conditional 
probability that a transaction 
having X also contains Y 
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Let  min_sup* = 50%, min_conf = 70% 

Freq. itemsets: {A:3, B:3, D:4, E:3, AD:3} 

Association rules: 

A  D  (60%, 100%) 

D  A  (60%, 75%) 

 

Customer 

buys diaper 

Customer 

buys both 

Customer 

buys beer 

Transaction-id Items bought 

10 A, B, D 

20 A, C, D 

30 A, D, E 

40 B, E, F 

50 B, C, D, E, F 

*Note that we  use min_sup for both itemsets  
  and association rules. 



Support, Confidence and Lift 

• Association rule is of the form X  Y, where X, Y  I are itemsets 
(usually, we assume X  Y = ). 

• support(X  Y) = P(X  Y) = count(X  Y)/dbsize. 

• confidence(X  Y) = P(Y|X) = count(X  Y)/count(X). 

• Therefore, always support(X  Y)  confidence(X  Y). 

• Typical values for min_sup in practical applications from 1 to 5%, for 
min_conf more than 50%. 

• lift(X  Y) = P(Y|X)/P(Y)  

                   = count(X  Y)*dbsize / count(X)*count(Y), 

   measures the increase in likelihood of Y given X vs. random (= no 
info). 



Apriori: A Candidate Generation-and-Test Approach 

• Apriori pruning principle: If there is any itemset which is 

infrequent, its superset should not be generated/tested! 

(Agrawal & Srikant @VLDB’94 fastAlgorithmsMiningAssociationRules.pdf 

    Mannila, et al. @ KDD’ 94 discoveryFrequentEpisodesEventSequences.pdf 

• Method:  

– Initially, scan DB once to get frequent 1-itemset 

– Generate length (k+1) candidate itemsets from length k 

frequent itemsets 

– Test the candidates against DB 

– Terminate when no more frequent sets can be generated 
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fastAlgorithmsMiningAssociationRules.pdf
discoveryFrequentEpisodesEventSequences.pdf


The Apriori Algorithm—An Example  
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Database TDB 

1st scan 

C1 

L1 

L2 

C2 C2 

2nd scan 

C3 L3 3rd scan 

Tid Items 

10 A, C, D 

20 B, C, E 

30 A, B, C, E 

40 B, E 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{D} 1 

{E} 3 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{E} 3 

Itemset 

{A, B} 

{A, C} 

{A, E} 

{B, C} 

{B, E} 

{C, E} 

Itemset sup 

{A, B} 1 

{A, C} 2 

{A, E} 1 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset sup 

{A, C} 2 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset 

{B, C, E} 

Itemset sup 

{B, C, E} 2 

min_sup = 2 



The Apriori Algorithm 

• Pseudo-code: 
Ck: Candidate itemset of size k 
Lk : frequent itemset of size k 

 

L1 = {frequent items}; 
for (k = 1; Lk !=; k++) do begin 
     Ck+1 = candidates generated from Lk ; 
    for each transaction t in database do 

       increment the count of all candidates in Ck+1                            

     that are contained in t 
    Lk+1  = candidates in Ck+1 with min_support 
    end 
return k Lk; 
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Important! 
How?! 
Next slide… 



Important Details of Apriori 

• How to generate candidates? 

– Step 1: self-joining Lk 

– Step 2: pruning 

• Example of candidate-generation 

– L3={abc, abd, acd, ace, bcd} 

– Self-joining: L3*L3 

• abcd from abc and abd 

• acde from acd and ace 

• Not abcd from abd and bcd ! 

   This allows efficient implementation: sort candidates Lk  lexicographically to bring 
together those with identical (k-1)-prefixes, … 

– Pruning: 

• acde is removed because ade is not in L3 

– C4={abcd} 
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How to Generate Candidates? 

• Suppose the items in Lk-1 are listed in an order 

• Step 1: self-joining Lk-1  

insert into Ck 

select p.item1, p.item2, …, p.itemk-1, q.itemk-1 

from p  Lk-1, q  Lk-1 

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1 

• Step 2: pruning 

forall itemsets c in Ck do 

forall (k-1)-subsets s of c do 

if (s is not in Lk-1) then delete c from Ck 
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How to Count Supports of Candidates? 
• Why counting supports of candidates a problem? 

– The total number of candidates can be very huge 

–  One transaction may contain many candidates 

• Method: 

– Candidate itemset Ck is stored in a hash-tree. 

– Leaf node of hash-tree contains a list of itemsets and counts. 

– Interior node contains a hash table keyed by items (i.e., an item 

hashes to a bucket) and each bucket points to a child node at next 

level.  

– Subset function: finds all the candidates contained in a transaction.  

– Increment count per candidate and return frequent ones. 
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Example: Using a Hash-Tree for Ck to Count Support 
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<c, e, f> 
<e, g, k> 

<d, f, h> 
<c, f, g, h> <e, f> 

<d> <f> <j> 

a 
b 

c 

b d 

c e h 

<c, e, g, k> <f, g, h> 

<b, c, e, f> 

<b, d, f, h> 

<a, d, e, f> 

<a, b, c, d> 

<a, b, e, f> 

<a, b, h, j> 

Storing the C4 below in a hash-tree with 
a max of 2 itemsets per leaf node: 

Depth 

0 

1 

3 

2 

a 
b 
c 

hash ptrs 

A hash tree is structurally same as a prefix tree (or trie), only difference being in the 
implementation: child pointers are stored in a hash table at each node in a hash tree  
vs. a list or array, because of the large and varying numbers of children. 



How to Build a Hash Tree on a 
Candidate Set 
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<c, e, f> <e, g, k> 

<d, f, h> 
<c, f, g, h> <e, f> 

<d> <f> <j> 

a 
b 

c 

b d 

c e h 

<c, e, g, k> <f, g, h> 

<b, c, e, f> 

<b, d, f, h> 

<a, d, e, f> 

<a, b, c, d> 

<a, b, e, f> 

<a, b, h, j> 

Example: Building the hash tree on the candidate set C4 of the previous slide 
(max 2 itemsets per leaf node) 

Ex: Find the candidates in C4 contained in the transaction <a, b, c, e, f, g, h>… 

<a, b, c, d> 
<a, b, e, f> 
<a, b, h, j> 

<b, c, d> 
<b, e, f> 
<b, h, j> 

<c, d> 
<e, f> 
<h, j> 

<a, d, e, f> 

<d, e, f> 

<b, c, e, f> <b, d, f, h> <c, e, g, k> <c, f, g, h> 



How to Use a Hash-Tree for Ck to Count Support 
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<c, e, f> 
<e, g, k> 

<d, f, h> 

<c, f, g, h> 

<e, f> 

<d> <f> <j> 

a 
b 

c 

b d 

c e h <c, e, g, k> 

<f, g, h> <b, c, e, f> 

<b, d, f, h> 

<a, d, e, f> 

<a, b, c, d> 

<a, b, e, f> 

<a, b, h, j> 

<a, b, c, e, f, g, h> 

<b, c, e, f, g, h> <c, e, f, g, h> <e, f, g, h> 

<c, e, f, g, h> 

<e, f, g, h> <f, g, h> <> 

C4  Count* 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

<c, e, f> 
<f, g, h> 

<f> 

Describe a general algorithm find candidates contained in a transaction. 
Hint: Recursive… 

For each transaction T, process T  through the hash tree to find members 
of Ck contained in T and increment their count. After all transactions are  
processed, eliminate those candidates with less than min support. 
 
Example: Find candidates in C4 contained in T = <a, b, c, e, f, g, h> 

*Counts are actually stored with the itemsets at the leaves. We show them in a separate  
table here for convenience. 



Generating Association Rules from Frequent 
Itemsets 

First, set min_sup for frequent itemsets to be the same as required for  
association rules. Pseudo-code: 
 
for each frequent itemset l 

     for each non-empty proper subset s of l 
        output the rule “s  l – s” if confidence(s  l – s) =  
        (count(I)/count(s)  min_conf 
 
The support requirement for each output rule is automatically 
satisfied because: 
support(s  I – s) = count(s  (l – s))/dbsize = count(l)/dbsize   min_sup 
(as l is frequent). Note: Because l is frequent, so is s. Therefore, count(s) 
and count(I) are available (because of the support checking step of Apriori)  and it’s 

straightforward to calculate  
confidence(s  I – s) = count(l)/count(s).  



Transactional data for an AllElectronics 
branch (Table 5.1) 

TID   List of item IDs 

T100                 I1, I2, I5 

T200                I2, I4 

T300                I2, I3 

T400                I1, I2, I4 

T500                I1, I3 

T600                I2, I3 

T700                I1, I3 

T800                I1, I2, I3, I5 

T900                I1, I2, I3 



Example 5.4: Generating Association 
Rules 

Frequent itemsets  from 

AllElectronics database (min_sup = 0.2): 
Frequent itemset        Count 

        {I1}                     6 

        {I2}                     7 

   {I3}                     6 

        {I4}                     2 

        {I5}                     2 

        {I1, I2}                4 

        {I1, I3}                4 

        {I1, I5}                2 

        {I2, I3}                4 

        {I2, I4}                2 

        {I2, I5}                2 

        {I1, I2, I3}           2 

        {I1, I2, I5}           2 

 

 

 

 

Consider the frequent itemset {I1, I2, I5}. 
The non-empty proper subsets are {I1}, {I2}, {I5}, {I1, I2}, 
{I1, I5}, {I2, I5}. 
The resulting association rules are: 
 
       Rule                                  Confidence 
 I1   I2  I5       count{I1, I2, I5}/count{ I1} = 2/6 =  33%   
 I2   I1  I5       ? 
 I5   I1  I2       ? 
 I1  I2  I5        ? 
 I1  I5  I2        ? 
 I2  I5  I1        ? 
 
How about association rules from other frequent itemsets? 

 
 



Challenges of Frequent Itemset Mining 

• Challenges 

– Multiple scans of transaction database 

– Huge number of candidates 

– Tedious workload of support counting for candidates 

• Improving Apriori: general ideas 

– Reduce passes of transaction database scans 

– Shrink number of candidates 

– Facilitate support counting of candidates 

20 



Improving Apriori – 1 

DHP: Direct Hashing and Pruning, by 

J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for 
mining association rules. In SIGMOD’95: 

effectiveHashBasedAlgorithmMiningAssociationRules.pdf 

Three Main ideas: 

a. Candidates are restricted to be subsets of transactions.  

     E.g., if {a, b, c} and {d, e, f} are two transactions and all 6 items a, b, 
c, d, e, f  are frequent, then Apriori considers 6C2  = 15 candidate 2-
itemsets, viz., ab, ac, ad, …. However, DHP considers only 6 
candidate 2-itemsets, viz., ab, ac, bc, de, df, ef. 

   Possible downside: Have to visit transactions in the database (on disk)! 

 

 

effectiveHashBasedAlgorithmMiningAssociationRules.pdf


Ideas behind DHP 

b.  A hash table is used to count support of itemsets of small size. 
 

E.g., hash table created using hash fn.  
h(Ix, Iy)  =  (10x +y) mod 7 
from Table 5.1 
 
Bucket address          0           1           2           3           4           5           6 
Bucket count             2           2           4           2           2           4           4 
Bucket contents    {I1, I4}  {I1, I5}  {I2, I3}  {I2, I4}  {I2, I5}  {I1, I2}  {I1, I3} 
                           {I3, I5}  {I1, I5}  {I2, I3}  {I2, I4}  {I2, I5}  {I1, I2}  {I1, I3} 
                                                     {I2, I3}                            {I1, I2}  {I1, I3} 
                                                     {I2, I3}                            {I1, I2}  {I1, I3} 
 

If min_sup = 3, the itemsets in buckets 0, 1, 3, 4, are infrequent and pruned. 



Ideas behind DHP 

c. Database itself is pruned by removing transactions based on the 
logic that a transaction can contain a frequent (k+1)-itemset only if 
contains at least k+1 different frequent k-itemsets. So, a transaction 
that doesn’t contain k+1 frequent k-itemsets can be pruned. 

E.g., say a transaction is {a, b, c, d, e, f }. Now, if it contains a frequent 3-
itemset, say aef, then it contains the 3 frequent 2-itemsets ae, af, ef. 

So, at the time that Lk, the frequent k-itemsets are determined, one can 
check transactions according to the condition above for possible 
pruning before the next stage. 

Say, we have determined L2 = {ac, bd, eg, eh, fg }. Then, we can drop the 
transaction  {a, b, c, d, e, f } from the database for the next step. 
Why? 



Improving Apriori – 2  

    Partition: Scanning the Database only Twice, by 

     Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for 
mining association in large databases. In VLDB’95: 
efficientAlgMiningAssocRulesLargeDB.pdf 

Main Idea: 

Partition the database (first scan) into n parts so that each fits in main. 
Observe that an itemset frequent in the whole DB (globally 
frequent) must be frequent in at least one partition (locally 
frequent). Therefore, collection of all locally frequent itemsets 
forms the global candidate set. Second scan is required to find the 
frequent itemsets from the global candidates. 

 

efficientAlgMiningAssocRulesLargeDB.pdf


Improving Apriori – 3  
Sampling: Mining a Subset of the Database, by 

H. Toivonen. Sampling large databases for association rules. In 

VLDB’96: samplingLargeDatabasesForAssociationRules.pdf 

Main idea: 

Choose a sufficiently small random sample S of the database D as 

to fit in main. Find all frequent itemsets in S (locally frequent) 

using a lower min_sup value (e.g., 1.5% instead of 2%) to lessen 

the probability of missing globally frequent itemsets. With high 

prob:  locally frequent  globally frequent. 

   Test each locally frequent if globally frequent!                                    

 

samplingLargeDatabasesForAssociationRules.pdf


Improving Apriori – 4  

S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset 
counting and implication rules for market basket data. In 
SIGMOD’97 : 

dynamicItemSetCounting.pdf 

 
Does this name 
ring a bell?! 

dynamicItemSetCounting.pdf


Applying the Apriori method to a 
special problem  

S. Guha. Efficiently Mining Frequent Subpaths. In AusDM’09: 

efficientlyMiningFrequentSubpaths.pdf 

 

efficientlyMiningFrequentSubpaths.pdf


Problem Context 

Mining frequent patterns in a 
database of transactions 

 

Mining frequent subgraphs in a database of 
graph transactions 

 

Mining frequent subpaths in a database of path transactions 
in a fixed graph 



Frequent Subpaths 

min_sup = 2 



Applications 

• Predicting network hotspots. 

• Predicting congestion in road traffic. 

• Non-graph problems may be modeled as well.  

    E.g.,  finding frequent text substrings: 
– I ate rice 

– He ate bread 

I 

t a e 

e c i r 

e H e b r a d 

Paths in the complete graph on characters 



AFS (Apriori for Frequent Subpaths) 

• Code 

• How it exploits the special environment of a 
graph to run faster than Apriori 



AFS (Apriori for Frequent Subpaths) 

AFS 

L0 = {frequent 0-subpaths};                        

for (k = 1; Lk-1 ≠ ; k++) 

{ 

Ck = AFSextend(Lk-1); // Generate candidates. 

Ck = AFSprune(Ck); // Prune candidates. 

Lk = AFScheckSupport(Ck); // Eliminate candidate 

                                         // if support too low. 

} 

return  k Lk; // Returns all frequent supaths. 



Frequent Subpaths: Extending paths 
(cf. Apriori joining) 

Extend only by edges incident on last vertex 



Frequent Subpaths: Pruning paths (cf. 
Apriori pruning) 



Frequent Subpaths: Pruning paths (cf. 
Apriori pruning) 

Check only suffix (k-1)-subpath if in Lk-1 



Analysis 

• The paper contains an analysis of the run-time of Apriori vs. 
AFS (even if you are not interested in AFS the analysis of 
Apriori might be useful) 



A Different Approach 

Determining Itemset Counts without Candidate Generation 

by building so-called FP-trees (FP = frequent pattern), by J. 

Han, J. Pei, Y. Yin. Mining Frequent Itemsets without 

Candidate Generation. In SIGMOD’00: 

miningFreqPatternsWithoutCandidateGen.pdf 

 

miningFreqPatternsWithoutCandidateGen.pdf
dynamicItemSetCountiing.pdf


FP-Tree Example 

A nice example of constructing an FP-tree:  

FP-treeExample.pdf (note that I have annotated it) 

FP-treeExample.pdf
FP-treeExample.pdf
FP-treeExample.pdf


Experimental  Comparisons 
          

A paper comparing the performance of various algorithms: 

"Real World Performance of Association Rule Algorithms", by 

Zheng, Kohavi and Mason (KDD ‘01) 
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realWorldPerformance AssocRuleAlgorithms.pdf


Mining Frequent Itemsets using Vertical Data Format 

Itemset      TID_set 
I1              {T100, T400, T500, T700, T800, T900} 
I2              {T100, T200, T300, T400, T600, T800, T900} 
I3              {T300, T500, T600, T700, T800, T900} 
I4              {T200, T400} 
I5              {T100, T800} 

Vertical data format of the AllElectronics database (Table 5.1) 
                                                                                        Min_sup = 2  

 Itemset       TID_ set 
 {I1, I2}      {T100, T400, T800, T900} 
 {I1, I3}      {T500, T700, T800, T900} 
 {I1, I4}      {T400} 
 {I1, I5}      {T100, T800} 
 {I2, I3}      {T300, T600, T800, T900} 
 {I2, I4}      {T200, T400} 
 {I2, I5}      {T100, T800} 
 {I3, I5}      {T800} 

 Itemset           TID_ set 
 {I1, I2, I3}      {T800, T900} 
 {I1, I2, I5}      {T100, T800} 

2-itemsets in VDF 3-itemsets in VDF 

By intersecting TID_sets. 

By intersecting TID_sets. Optimize 
by using Apriori principle, e.g., no need 
to intersect {I1, I2} and {I2, I4} because 
{I1, I4} is not frequent. 

Paper presenting so-called ECLAT algorithm for frequent itemset mining using VDF format: 
M. Zaki (IEEE Trans. KDM ‘00): Scalable Algorithms for Association Mining 
scalableAlgorithmsAssociationMining.pdf 

scalableAlgorithmsAssociationMining.pdf


Closed Frequent Itemsets and 
Maximal Frequent Itemsets • A long itemset contains an exponential number of sub-itemsets, e.g., {a1, …, 

a100} contains (100
1) + (100

2) + … + (100
100) = 2100 – 1 = 1.27*1030 sub-itemsets! 

• Problem: Therefore, if there exist long frequent itemsets, then the miner 

will have to list an exponential number of frequent itemsets. 

• Solution: Mine closed frequent itemsets and/or maximal frequent itemsets 

instead 

• An itemset X is closed if X there exists no super-itemset Y כ X, with the same 

support as X. In other words, if we add an element to X then its support will 

drop.  

• X is said to be closed frequent if it is both closed and frequent.   

• An itemset X is a maximal frequent if X is frequent and there exists no 

frequent super-itemset Y כ X. 

• Closed frequent itemsets give support information about all frequent 

itemsets, maximal frequent itemsets do not. 
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I.e., Y is strictly 
bigger than X. 



Examples 

• DB: 

T1: a, b, c 

T2: a, b, c, d 

T3: c, d 

T4: a, e 

T5: a, c 

 

1. Find the closed sets. 

2. Assume min_sup = 2, find closed frequent and max  

     frequent sets. 42 



Condition for an itemset to be closed 

Lemma 1: Itemset I is closed if and only if for every element x  I there exists a 
transaction T s.t. I  T and x  T. 

Proof:  

Suppose I is closed and x  I. Then, by definition, the support of  I U {x} is less than the 
support of I. Therefore, there is at least one transaction T containing I but not 
containing  I U {x}, which means I  T and x  T. 

 

Conversely, suppose that for every element x  I there exists a transaction T s.t. I  T 
and x  T. It is easy to see that this means the support of any itemset strictly bigger 
than I is less than that of I, which means I is closed. 



Intersection of closed sets is closed 

Lemma 2: The intersection of any two closed itemsets A and B is closed. 

Proof:  

Suppose, if possible, that A and B are closed but A  B is not closed. Since A  B 
is not closed, by the (contrapositive of the) previous lemma there must exist an 
element  x  A  B, s.t. every transaction containing A  B also contains x.  

Since every transaction containing A  B contains x, every transaction containing 
A also contains x. But this means x  A, otherwise we violate the condition of the 
previous lemma for A to be closed. 

By the same reasoning we must have x  B. But then x  A  B which contradicts 
the statement above that x  A  B. Therefore, A  B must be closed. 

Corollary: The intersection of any two closed frequent itemsets A and B is closed 
frequent. Because the intersection of two frequent sets is frequent. 

Corollary: The intersection of any finite number of closed frequent itemsets is 
closed frequent. 

 



Every frequent itemset is contained in a closed 
frequent itemset 

Lemma 3: Any frequent itemset A is contained in a closed frequent itemset with the 
same support as A. 

Proof: 

Suppose A is a frequent itemset. If A is closed itself there is nothing more to prove.  

So, suppose A is not closed. By definition then, there exists an x  A s.t.  

A U {x} has the same support as A. If A U {x} is closed, then A U {x} is the closed 
frequent itemset containing A with the same support. 

If A U {x} is not closed, then we can repeat the process to add another element y  A 
s.t. A U {x, y} has the same support as A. Again, if  

A U {x, y} is closed then we are done.  

If A U {x, y} is not closed, repeat the process of adding new elements until it ends – it 
must end because there are only a finite number of elements – when we will indeed 
have a closed frequent itemset containing A with the same support.  

 



Finding the support of all frequent itemsets 
from the support of closed frequent itemsets 

Theorem: Every frequent itemset A is contained in a unique smallest closed frequent 
itemset, which has the same support as A. 

Proof: 

From Lemma 3 we know that there is at least one closed frequent itemset containing 
A. Now, consider the intersection of all closed frequent itemsets containing A. Call this 
set A’. Then, by a corollary to Lemma 2, A’ is also closed frequent. Moreover, A’ is the 
smallest closed frequent itemset containing A, because it is contained in every closed 
frequent itemset containing A (being their intersection). 

 

By Lemma 3, there is a closed frequent itemset, call it A’’, s.t.,  

support(A) = support(A’’). But, we have A  A’  A’’, because A’ is smallest closed 
frequent itemset containing A, which means  

support(A)  support(A’)   support(A’’). 

Since support(A) = support(A’’), we conclude that support(A) = support(A’), finishing 
the proof. 



Finding the support of frequent itemsets from 
the support of closed frequent itemsets 

The previous theorem allows us to find to find the support of all 
frequent itemsets just from knowing the support of closed 
frequent itemsets. 

 

It means ambiguous situations like the following cannot happen: 

{a, b} is frequent, and the only closed frequents sets are {a, b, c, 
d} with support 4 and {a, b, e, f} with support 5. So, is the 
support of {a, b} 4 or 5? 

Why can’t such a situation happen?! 



Examples 

• Exercise.  DB = {<a1, …, a100>, < a1, …, a50>}  

– Say min_sup = 1 (absolute value, or we could say 0.5). 

• What is the set of closed frequent itemsets? 

– <a1, …, a100>: 1 

– < a1, …, a50>: 2 

• What is the set of maximal frequent itemsets? 

– <a1, …, a100>: 1 

• Now, consider if <a2, a45> and <a8, a55> are frequent and what are 

their counts from (a) knowing maximal frequent itemsets, and (b) 

knowing closed frequent itemsets. 
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Mining Closed Frequent Itemsets Papers 
– Pasquier, Bastide, Taouil, Lakhal (ICDT’99): Discovering Closed Frequent 

Itemsets for Association Rules 

   discoveringFreqClosedItemsetsAssocRules.pdf 

   The original paper: nicely done theory, not clear if algorithm is practical. 

– Pei, Han, Mao (DMKD’00): CLOSET: An Efficient Algorithm for Mining Frequent 

Closed Itemset 

    CLOSETminingFrequentClosedItemsets.pdf 

    Based on FP-growth. Similar ideas (same authors). 

– Zaki, Hsiao (SDM’02): CHARM: An Efficient Algorithm for Closed Itemset 

Mining 

   CHARMefficientAlgorithmClosedItemsetMining.pdf 

   Based on Zaki’s (IEEE Trans. KDM ‘00) ECLAT algorithm for frequent  
   itemset mining using the VDF format. 
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Mining Multilevel Association Rules 

All 

Computer Software Printer Accessory 

Laptop Desktop Office Antivirus Inkjet Laser Stick Mouse 

Dell Lenovo Kingston 

Inspiron Y22 Latitude X123 8 GB DTM 10 

5-level concept heirarchy 

Level 0 

Level 1 

Principle: Association rules at low levels may have little support; conversely, 
there may exist stronger rules at higher concept levels. 



Multidimensional Association Rules 

• Single-dimensional association rule uses a single predicate, e.g., 

    buys(X, “digital camera”)   buys(X, “HP printer”) 

• Multidimensional association rule uses multiple predicates, e.g., 

       age(X, “20…29”) AND occupation(X, “student”)  buys(X, “laptop”) 

and 

   age(X, “20…29”) AND buys(X, “laptop”)  buys(X, “HP printer”) 



Association Rules for Quantitative Data 

• Quantitative data cannot be mined per se: 
– E.g., if income data is quantitative it can have values 21.3K, 44.9K, 

37.3K. Then, a rule like  

  income(X, 37.3K)  buys(X, laptop) 

    will have little support (also what does it mean? How about someone 
with income 37.4K?) 

• However, quantitative data can be discretized into finite 
ranges, e.g., income 30K-40K, 40K-50K, etc. 
– E.g., the rule 

   income(X, “30K…40K”)  buys(X, laptop)  

    is meaningful and useful. 

 

       



Checking Strong Rules using Lift 

Consider: 

 10,000 transactions 

 6000 transactions included computer games 

 7500 transactions included videos 

 4000 included both computer games and videos 

 min_sup = 30%, min confidence = 60% 

One rule generated will be: 

 buys(X, “computer games”)  buys(X, videos)    support=40%, conf = 66%  

However,  

 prob( buys(X, videos)  ) = 75% 

so buying a computer game actually reduces  the chance of buying a video! 

This can be detected by checking the lift of the rule, viz., 

  lift(computer games  videos) = 8/9 < 1. 

A useful rule must have lift > 1. 


